THERMAL DECOMPOSITION OF HYDROGEN PEROXIDE IN THE PRESENCE OF SULFURIC ACID

L.-K. Wu¹, K.-Y. Chen², S.-Y. Cheng³, B.-S. Lee⁴ and C.-M. Shu^{1*}

¹Process Safety and Disaster Prevention Laboratory, Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin, Taiwan 64002, ROC ²Doctoral Program, Graduate School of Engineering Science and Technology, NYUST

³Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, 60, Erh-Jen Rd., Sec. 1, Jen-Te Tainan, Taiwan 71710, ROC

⁴Department of Biotechnology, ChungChou Institute of Technology, Yuanlin, Changhua, Taiwan 510, ROC

Hydrogen peroxide (H₂O₂) is popularly employed as a reaction reagent in cleaning processes for the chemical industry and semiconductor plants. By using differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), this study focused on the thermal decomposition reaction of H₂O₂ mixed with sulfuric acid (H₂SO₄) with low (0.1, 0.5 and 1.0 N), and high concentrations of 96 mass%, respectively. Thermokinetic data, such as exothermic onset temperature (T_0), heat of decomposition (ΔH_d), pressure rise rate (dP/dt), and self-heating rate (dT/dt), were obtained and assessed by the DSC and VSP2 experiments. From the thermal decomposition reaction on various concentrations of H₂SO₄, the experimental data of T_0 , ΔH , dP/dt, and dT/dt were obtained. Comparisons of the reactivity for H₂O₂ and H₂O₂ mixed with H₂SO₄ (lower and higher concentrations) were evaluated to corroborate the decomposition reaction in these systems.

Keywords: DSC, hydrogen peroxide (H_2O_2), sulfuric acid (H_2SO_4), thermal decomposition reaction, vent sizing package 2 (VSP2)

Introduction

Hydrogen peroxide (H_2O_2) is the most common peroxide in many applications throughout a wide variety of industries, as pure H_2O_2 and its aqueous solutions resemble water in physical appearance. It is also widely employed in semiconductor manufacturing processes because it is essentially active to oxidizing agents for organic and inorganic cleaning processing [1]. Many thermal runaway incidents have been caused by H_2O_2 due to the peroxy function group, -O-O-, which is essentially unstable and active. H_2O_2 is also sensitive to thermal sources and is incompatible with many materials, such as acids, bases, metals and ions [2–5].

Table 1 gathers accidents caused by H_2O_2 in the USA and New Zealand [6]. Hydrogen peroxide containing impurities, which can exist in a noncontrolled environment, has caused many explosions [7]. H_2O_2 was mixed with sulfuric acid (H_2SO_4) in a vacuum truck and an explosion occurred at that moment. The cause of the accident is suspected to be that H_2SO_4 , which was mixed, accelerated catalytic decomposition of H_2O_2 and led to a runaway reaction. When the self-heating rate by the decomposition exceeds a heat radiation rate toward the outside of the container, thermal storage occurs. Rising temperature

* Author for correspondence: shucm@yuntech.edu.tw

accelerates the decomposition, leading to a thermal explosion after an induction period [8, 9].

The piranha solution (Caro's solution), which is applied to remove organic residues from substrates, has caused many accidents, because of its dangerous chemical mixtures. However, the H₂O₂ should not be added a great quantity more than the acid to avoid explosion of the mixture. Typical application is a 3:1 mixture of H₂SO₄ (96 mass%) with H₂O₂ (20 mass%) [10]. In this study, the mechanism contrasted with thermokinetics of decomposition reaction for H₂O₂ in the presence of H₂SO₄ did compare with the thermal analysis and adiabatic runaway data, exothermic onset temperature (T_0), heat of decomposition (ΔH_d), self-heating rate (dT/dt), pressure rise rate (dP/dt), etc., in these systems.

Experimental

Samples

This reaction was focused on thermal decomposition for H_2O_2 present with H_2SO_4 . We selected the decomposition of H_2O_2 (20 mass%, 30 mL) mixed with H_2SO_4 (0.1, 0.5 and 1.0 N, 10 mL) and H_2O_2 (20 mass%, 2, 4 and 6 mL) mixed with H_2SO_4 (96 mass%, 6 mL).

WU et al.

Date	Location	Fatalities	Injuries	Remarks
01/27/2005	San Bernardino, California, USA	N/A	0	tank-container
01/13/2005	Vacaville, California, USA	N/A	0	road-tanker
01/08/2005	Seabrook, Texas, USA	N/A	0	rail-tanker
12/23/2004	South Dunedin, New Zealand	N/A	N/A	tank-container
04/24/2004	Dallas, Texas, USA	N/A	N/A	tank-container
04/05/2004	Mobile, Alabama, USA	N/A	N/A	waste-storage
02/17/2004	Nr. Natchez, Mississippi, USA	N/A	N/A	transport

Table 1 Selected accidents caused by H₂O₂ in USA and New Zealand since 2004 [6]

N/A: not applicable

Differential scanning calorimetry (DSC)

A temperature-programmed screening experiment was performed (Mettler TA8000 system). The test cell could withstand high pressure to approximately 100 bar (DSC 821°). The experiment was conducted between 30 to 300°C; the scanning rate selected for the temperature-programmed ramp was 4°C min⁻¹ to maintain better thermal equilibrium [11].

Vent sizing package 2 (VSP2)

VSP2, developed by Fauske and Associates, Inc. (FAI) [12] is a highly sensitive calorimeter that can obtain thermokinetic and thermal decomposition data, such as temperature and pressure traces with respect to time in an adiabatic calorimeter system by PCcontrol. Under heating conditions, the main heater will turn onto heat the sample to a pre-set temperature, then turn on a guard heater to maintain an adiabatic environment. The standard operating procedure is repeated by automatic heat-wait-search (H–W–S) mode. To adequately protect the normal operation of this apparatus and avoid bursting the test cell and missing the end of exothermic data, 20 mass% of $\mathrm{H_2O_2}$ was prudently chosen for the experiments. We injected H_2O_2 (20 mass%, 30 mL) mixed with H₂SO₄ (different concentrations, 10 mL) into the test cell and H2O2 (20 mass%, different volumes) mixed with 96 mass% H₂SO₄ into the spherical bomb.

Results and discussion

Thermal analysis by DSC

The T_0 and ΔH_d of H₂O₂ reacting with H₂SO₄ (lower concentration) could be obtained and calculated from the peak areas by DSC, which was performed to provide different experimental results for thermal decomposition. The DSC scans under continuous heating conditions show the presence of one exothermic peak.

Fig. 1 Comparison of heat production vs. temperature by DSC tests on H₂O₂ and various concentrations of H₂SO₄ at heating rate of 4°C min⁻¹

Figure 1 depicts the typical heat flow curve that was obtained through DSC of the thermal decomposition for H_2O_2 with various concentrations of H_2SO_4 . The T_0 value of H₂O₂ acquired was about 67°C which is lower than the solutions of H_2O_2 mixed with H_2SO_4 (0.1, 0.5 and 1.0 N). Table 2, which is obtained through DSC data, displays the exothermic data of H₂O₂ compared with various concentrations of H₂SO₄ (lower concentration). According to the data from Fig. 1 and Table 2, the H_2O_2 mixed with various concentrations of H_2SO_4 (0.1, 0.5 and 1.0 N) reveals that ΔH_d was lower than H₂O₂ alone. From thermal analysis by DSC trials, we found that H₂O₂ itself will react more dangerously than with H_2SO_4 (0.1, 0.5 and 1.0 N). Figures 2a and b delineate our proposed mechanisms of the reaction when the decomposition of H_2O_2 is mixed with the H_2SO_4 (lower concentration). Figure 2a illustrates that the $\mathrm{H_2O_2}$ decomposed to $\mathrm{H_3O_2^+}$ and $\mathrm{H_3O^+},$ in the solution and H_2SO_4 led to HSO_4^- in the solution. The $H_2SO_4^-$, integrated with $H_3O_2^+$, shifted to H_2SO_5 [8]. Figure 2b shows that the solution, which included the H_2O_2 and the H_2SO_4 , had a great quantity of H_2O . The H_2SO_5 combined with the H_2O shifted to HSO_5^- in a moment. The HSO₅ combined with H₂O and decom-

THERMAL DECOMPOSITION OF HYDROGEN PEROXIDE

Thermal analysis						
Sample					Therr	nal data
H ₂ O ₂		H_2SO_4		Scanning rate/	$T_{0}/$	$\Delta H_{\rm d}$
Conc./mass%	Mass/mg	Conc./N	Mass/mg	°C min ⁻¹	°Č	J g ⁻¹
20	2.47	0.0	0.00	4	67	162
20	2.01	0.1	0.91	4	70	154
20	2.54	0.5	0.70	4	76	99
20	2.25	1.0	0.73	4	98	110

Table 2 Experimental data of decomposition reaction for H₂O₂ mixed with H₂SO₄ (0.1, 0.5 and 1.0 N) by DSC

Fig. 2 Proposed reaction mechanisms for H₂O₂ mixing with the lower concentrations of H₂SO₄ (0.1, 0.5 and 1.0 N): a - H₂O₂ combined with H₂SO₄ shifts to H₂SO₅; b - H₂SO₅ shifts to H₂O₂ [10]

posed to HSO_4^- and HOO^- , quickly. The final step indicated the HOO^- , after being mixed with H_3O^+ , returned to H_2O_2 . According to Figs 1 and 2, the concentration of H_2SO_4 could rise and the reaction rate became slower than the H_2O_2 alone.

Thermal decomposition of adiabatic experiments

Adiabatic thermal decomposition reaction data could be detected by VSP2 to obtain the thermokinetic parameters such as T_0 , ΔH_d , dP/dt, and dT/dt, and so on. The characteristic curves of self-heating rate and pressure rise rate of H₂O₂ reacting with H₂SO₄ (0.1, 0.5 and 1.0 N) are recorded in Figs 3 and 4. From Figs 3

Fig. 3 Self-heating rate vs. temperature for thermal decomposition of H₂O₂ and H₂O₂ reacting with H₂SO₄ (0.1, 0.5 and 1.0 N), respectively

and 4, when H₂SO₄ (0.1, 0.5 and 1.0 N) concentrations are increased, the self-heating rate and pressure rise rate can be lower than that of H₂O₂. VSP2 experimental data that were acquired by the tests of H₂O₂ mixed with different concentrations H₂SO₄ are summarized in Table 3. According to Table 3, the H₂SO₄ could raise T_0 of the thermal decomposition for H₂O₂, and thermokinetic parameters of maximum temperature (T_{max}), maximum pressure (P_{max}), dP/dt_{max} , and dT/dt_{max} became smaller with increasing concentration of H₂SO₄ (0.1, 0.5 and 1.0 N).

There are many possible reaction pathways with respect to the decomposition of H_2O_2 . In experiments, the H_2O_2 decomposition reaction was mixed with the H_2SO_4 (0.1, 0.5 and 1.0 N) solution. Meanwhile, it was verified that the H_2O_2 reacting with the H_2SO_4 (0.1, 0.5 and 1.0 N) shifted to H_2SO_5 . According to Fig. 2, we assumed that the decomposition of the H_2SO_5 reacts with water and changes to H_2O_2 . This is the reason why the reaction was slower. By comparison of the data for thermal analysis and adiabatic decomposition reactions from DSC and VSP2 calorimetries, we proposed the decomposition rate of H_2O_2 was increased with the H_2SO_4 under the lower concentration. According to Figs 2–4 and Table 3, it could have raised the concentration of H_2SO_4 and the reaction rate became slower than the H_2O_2 alone.

During the VSP2 test, H₂O₂ mixed with the H₂SO₄ (96 mass%) caused a violent reaction in a short period resulting in bursting along the weld of the test cell, only the adiabatic data was influenced by H₂SO₄ (lower concentration). Accordingly, other sets of data were obtained by using spherical test bombs equipped with VSP2. Figures 5 and 6 show that the reaction of H₂O₂ mixed with H₂SO₄ instantly generated high temperature and pressure during the test. VSP2 experimental data of the spherical bomb was received by the tests of H_2O_2 mixed with H_2SO_4 (96 mass%), as summarized in Table 4. According to Table 4, maximum of pressure rise rate $(dP/dt)_{max}$ and maximum of temperature rise rate $(dT/dt)_{max}$ of the H₂SO₄ (96 mass%) could rise rapidly during a runaway reaction. Figures 7a-c show the proposed modified reaction mechanisms of the and decomposition for H2O2 mixed with the H2SO4 (higher concentration). Figure 7a illustrates the $H_2SO_4^-$, when integrated with $H_3O_2^+$ shifted to H_2SO_5 [8]. Figure 7b shows that the solution, which

included the H_2O_2 and the H_2SO_4 (higher concentration), had a great quantity of H_2SO_4 . The H_2SO_5 shifted to HSO_5^- and OH^- . The HSO_4^- decomposed to form SO_4^{2-} and OH^- quickly. Figure 7c depicts the H_2SO_5 integrated with $H_3O_2^+$ shifted to $H_3SO_5^-$ in another reaction. The $H_3SO_5^-$, combined the HSO_4^- shifted to $H_2S_2O_8$ and H_2O . The $H_2S_2O_8$ shifted to $S_2O_8^{2-}$ and H_2O in a moment. The $S_2O_8^{2-}$ decomposed to $2SO_4^{2-}$ quickly. H_2O_2 mixing with H_2SO_4 could

Fig. 5 Temperature *vs.* time for thermal reaction of H₂O₂ reacting with H₂SO₄ (96 mass%) by VSP2

Fig. 6 Pressure vs. time of H₂O₂ reacting with H₂SO₄ (96 mass%) by VSP2

Table 3 VSP2 experiment	al data of incor	npatibilities on H ₂	O ₂ with H ₂ SO ₄	(0.1, 0.5 and)	1.0 N)
-------------------------	------------------	---------------------------------	--	-----------------	--------

Sample	$T_0/^{\circ}\mathrm{C}$	$T_{\rm max}/^{\circ}{ m C}$	P _{max} /bar	$(dT/dt)_{max}/$ °C min ⁻¹	$(dP/dt)_{max}/$ bar min ⁻¹
H ₂ O ₂ (20 mass%, 30 mL)	51.1	132.6	16.0	1.0	0.32
H ₂ O ₂ (20 mass%, 30 mL)+ 0.1 N H ₂ SO ₄ (10 mL)	66.0	100.8	13.5	0.3	0.12
H ₂ O ₂ (20 mass%, 30 mL)+ 0.5 N H ₂ SO ₄ (10 mL)	68.4	98.3	10.3	0.1	0.03
H ₂ O ₂ (20 mass%, 30 mL)+ 1.0 N H ₂ SO ₄ (10 mL)	68.1	94.3	5.3	0.3	0.06

Sample	$T_0/^{\circ}\mathrm{C}$	$T_{\rm max}/^{\circ}{\rm C}$	P _{max} /bar	$(dT/dt)_{max}/$ °C min ⁻¹	$(dP/dt)_{max}/$ bar min ⁻¹
H ₂ O ₂ (20 mass%, 2 mL)+ H ₂ SO ₄ (96 mass%, 6 mL)	N/A	88.0	3.1	34.7	0.32
H ₂ O ₂ (20 mass%, 4 mL)+ H ₂ SO ₄ (96 mass%, 6 mL)	N/A	101.9	4.9	60.4	0.12
H ₂ O ₂ (20 mass%, 6 mL)+ H ₂ SO ₄ (96 mass%, 6 mL)	N/A	120.8	7.5	70.9	0.03

Table 4 VSP2 experimental data of spherical bomb on H₂O₂ and H₂SO₄ (96 mass%)

N/A: not applicable

Fig. 7 Proposed reaction mechanisms for H_2O_2 mixed with higher concentrations of H_2SO_4 (96 mass%): $a - H_2O_2$ combined with H_2SO_4 shifts to H_2SO_5 ; $b - H_2SO_5$ shifts to SO_4^{2-} ; $c - H_2SO_5$ mutates to $H_2S_2O_8$ and shifts to SO_4^{2-} [10]

result in a violent heat decomposition and pressure rise. Attention was focused on the H_2O_2 forming an unstable compound when it reacted with the high concentration of H_2SO_4 (96 mass%), which had a great quantity of H_2SO_4 and with increasing the mass of H_2O_2 shifted quickly to H_2O_2 decomposition reaction. We proposed that the reaction rate of H_2O_2 mixed with H_2SO_4 (96 mass%) was increasing with the mass of H_2O_2 . According to the data from Figs 4, 5, 7 and Table 4, the reaction rate increased quickly with increasing mass of H_2O_2 .

Conclusions

The reactivity of H_2O_2 mixed with H_2SO_4 (0.1, 0.5) and 1.0 N) undergoing thermal decomposition was examined. When an H₂O₂ solution contained lower concentration of H₂SO₄, the reaction rate was observed to shift to slower than pure H₂O₂ (20 mass%). The H_2O_2 reacting with a lower concentration of H₂SO₄ had a great amount of H₂O and H₂SO₄, resulting in shifting to the formation of H₂O₂ reaction. With increasing concentration of acid, this shift translates into an increase in reaction rate that was much slower than pure H_2O_2 , depending on the concentration of H₂SO₄. When the H₂O₂ mixture contained H₂SO₄ (higher concentration), the reaction was observed to be violent. The H₂O₂ reacted with higher concentration of H_2SO_4 (96 mass%), which has a great quantity of H₂SO₄, and led to the reaction rate of the H₂O₂ decomposition reaction shifting quickly. Under high concentration of H₂SO₄ (96 mass%), the reaction rate can rise faster, followed by increasing the amount of H_2O_2 .

Acknowledgements

The authors are indebted to the donors of the National Science Council (NSC) in Taiwan under the contract No. NSC-96-2221-E-407-001 for financial support. In addition, the authors wish to acknowledge Mr. Yan-Fu Lin, Mr. Yih-Wen Wang and Dr. Houng-Yi Hou for their technical support of this study.

References

- 1 P. D. Filippis, C. Giavarini and R. Silla, J. Loss Prev. Pro. Ind., 15 (2002) 449.
- 2 K. T. Lu, C. C. Yang and P. C. Lin, J. Hazard. Mater., B135 (2006) 319.
- 3 D. J. Peng, Y. S. Duh and C. M. Shu, J. Loss Prev. Pro. Ind., 19 (2006) 743.
- 4 C. M. Shu and Y. J. Yang, Thermochim. Acta, 392 (2002) 259.
- 5 K. Y. Chen, C. M. Lin, C. M. Shu and C. S. Kao, J. Therm. Anal. Cal., 85 (2006) 87.
- 6 MHIDAS, 2006. Major Hazard Incident Data Service, OHS_ROM, Reference Manual.

- 7 J. C. Raines, J. P. Schmidt, J. P. Burelbach and H. K. Fauske, J. Therm. Anal. Cal., 85 (2006) 53.
- 8 J. P. Lacoursière, Process Saf. Prog., 24 (2005) 115.
- 9 I. Eto, M. Akiyoshi, T. Matsunaga, A. Miyake and T. Ogawa, J. Therm. Anal. Cal., 85 (2006) 623.
- 10 A. E. Comyns, Peroxides and Peroxide Compounds-Inorganic, Kirk-Othmer Encyclopaedia of Chemical Technology, 4th Ed., 18 (1996) 202.
- 11 Mettler Toledo, Operating Instructions, STAR^e Software with Solaris Operating System, Sweden 2004.
- 12 VSP2 Manual and Methodology, Fauske & Associates, Inc., Burr Ridge, Illinois, USA 2003.

DOI: 10.1007/s10973-007-8829-6